Metal-catalysed Reactions of Benzhydryl 6-Diazopenicillanate with Alcohols

By STEPHEN A MATLIN* and LAM CHAN

(Chemistry Department, The City University, Northampton Square, London ECIV 0HB)

Summary Thiazepines are major products of the copperand rhodium-catalysed reactions of benzhydryl 6-diazopenicillanate with alcohols, they are formed *via* rearrangement of oxonium ylide intermediates and a competing process gives the 6α -alkoxypenicillanates

THE copper-catalysed¹ and BF₃ Et₂O-catalysed² reactions of α -diazocarbonyl compounds with alcohols afford α alkoxyketones The mechanisms of these reactions have been discussed in terms of 'direct' carbene or carbenoid insertion into the O-H bonds, proton transfer processes, and oxonium ylide intermediates ^{1,2} Recently, the BF₃-Et₂O-catalysed reaction of a 6-diazopenicillanate ester (1 R = CH₂CCl₃) with alcohols has been shown to give the 6 α -alkoxypenicillanates (2 R¹ = CH₂CCl₃, R² = Me, Bu^t, or PhCH₂) in high yields ³ We now report the unexpectedly different behaviour of a 6-diazopenicillanate with metal catalysts which provides a valuable mechanistic insight into the processes involved

When the diazo ester (1 $R = CHPh_2$) was decomposed in ethanol containing a catalytic amount of bisacetylacetonatocopper [Cu(acac)₂], the 6α -ethoxypenicillanate (2 $R^1 = CHPh_2$, $R^2 = Et$) was formed in only 20% yield, the major product (29%) being the ethoxythiazepine (3 R = Et) Rhodium acetate has been reported to be superior to copper catalysts for insertion into hydroxygroups ⁴ However, in the present case, decompositions of the diazopenicillanate (1 $R = CHPh_2$) in ethanol, t-butyl alcohol, and benzyl alcohol containing $Rh_2(OAc)_4 2H_2O$ gave mainly the thiazepines (3 R = Et, Bu^t, or PhCH₂, respectively), and only low yields of 6α -alkoxypenicillanates (Table)

Reactions of the diazopenicillanate with methanol were studied under a variety of conditions As reported previously,³ use of BF₃ Et₂O gave a high yield (72%) of 6α -methoxypenicillanate (2 R¹ = CHPh₂, R² = Me) and no thiazepine was detected Use of TsOH as catalyst gave an

identical result On the other hand, catalysis by both $Rh_2(OAc)_4$ and $Cu(acac)_2$ led to the formation of methoxy-thiazepine as well as methoxypenicillanate (Table)

Table	Reactions	of	benzhydryl alcohols ^B	6-diazopenicillanate	with
			arconois		

	$Rh_2(OAc)_4^c$		Cu(acac) ₂ d	
Alcoholb	(2)	(3)	(2)	(3)
MeOH	55	19	56	23
EtOH	12	75	20	29
Bu ^t OH	6	72		
PhCH ₂ OH	< 5	67		
EtOH_DBN	55	20		
CH,=CHCH,OH	$<\!5$	70	9	56

^a Reactions with Cu(acac)₂ were typically complete in 1–2 h, whereas those with Rh₂(OAc)₄ 2H₂O were appreciably faster All new compounds gave satisfactory microanalysis and spectroscopic data ^b The alcohol was the solvent in all the reactions except for those with benzyl and allyl alcohols, where CH₂Cl₂ was used as co-solvent ^c 0 01 wt % catalyst was used ^d 0 02 wt % catalyst was used

This zepine products have previously been observed during the base-catalysed epimerisation of 6β -aminopenicillanate derivatives to the 6α -isomers, involving deprotonation at the 6-position 5,6 Thus, the formation of the ethoxythiszepine is consistent with the intermediacy of the oxonium yhide (5) (Scheme) The 6α -ethoxypenicillanate could arise either via proton transfer in the yhide (5)

or by an independent pathway The trend in product ratios for methanol, ethanol, and t-butyl alcohol with Rh₂(OAc)₄ as catalyst parallels the trend in acidity (MeOH>EtOH> Bu^tOH) and is in the same order as the relative rates of rhodium-catalysed O-H insertion reactions of diazoacetic esters with these alcohols ⁴ An explanation consistent with these observations is that the product ratio is kinetically controlled by the relative rate of rearrangement of the oxonium ylide (5) and a competing proton transfer pathway, which may involve (5) as a common intermediate In agreement with this mechanism, when the diazopenicillanate $(1 R = CHPh_2)$ was added to 0.1 equiv of 1,5diazabicyclo[4 3 0]non-5-ene⁵ (DBN) in ethanol containing $Rh_2(OAc)_4$, there was a substantial change in product yields, with the ethoxypenicillanate now being favoured (Table)

In ethanol alone or ethanol-DNB, in the absence of rhodium catalyst, the diazoester showed little decomposition after 48 h and neither ethoxypenicillanate nor ethoxythiazepine could be detected. The effect on product ratios of changing the metal catalyst is also noteworthy and implies a role for the metal either in assisting proton transfer or in co-ordinating to the ylide (5).

In an attempt to provide an alternative pathway for the intermediate oxonium ylide to rearrange, the reaction with allyl alcohol was studied. Allyl-substituted ylides of sulphur,7 selenium,7 and nitrogen8 are known to undergo 2,3-sigmatropic shifts affording 6-allyl penicillanates. However, both the rhodium- and copper-catalysed reactions of

the diazo compound (1: $R = CHPh_2$) with allyl alcohol gave mainly allyloxythiazepine (3: $R = CH_2CH=CH_2$) and the 6-allyl-6-hydroxypenicillanate (4) was not observed. In contrast with these results (Table), the BF3.Et2Ocatalysed reaction with allyl alcohol gave 6a-allyloxypenicillanate (2: $R^1 = CHPh_2$; $R^2 = CH_2CH=CH_2$) in 70% yield and no thiazepine could be detected.

We thank Pfizer Ltd. for a gift of 6-aminopenicillanic acid and Johnson-Matthey Ltd. for a loan of rhodium acetate.

(Received, 1st May 1980; Com. 457.)

- ¹ W. Kirmse in 'Carbene Chemistry,' Academic Press, New York, 2nd Edn, 1971.
- ² G. W. Cowell and A. Ledwith, Quart. Rev., Chem. Soc., 1970, 24, 119.
- ³ P. J. Giddings, D. I. John, and E. J. Thomas, *Tetrahedron Lett.*, 1978, 995.
 ⁴ R. Paulissen, H. Reimlinger, E. Hayze, A. J. Hubert, and P. Teyessié, *Tetrahedron Lett.*, 1973, 2233.
- ⁵ B. G. Ramsey and R. J. Stoolley, *J. Chem. Soc., Chem. Commun.*, 1971, 450.
 ⁶ P. G. Sammes, *Chem. Rev.*, 1976, **76**, 113.
 ⁷ P. J. Giddings, D. I. John, and E. J. Thomas, *Tetrahedron Lett.*, 1980, 395.

- ⁸ G V. Kaiser, C. W. Ashbrook, and J. E. Baldwin, J. Am. Chem. Soc., 1971, 93, 2342.